

ALASKA CLASS FERRY Speed and Power Estimate

Prepared for: Alaska Marine Highway System • Ketchikan, AK

Ref: 06137-006-050-1 Rev. 0 November 29, 2010

PREPARED BY

Elliott Bay Design Group 5305 Shilshole Ave. NW, Ste. 100 Seattle, WA 98107

REVISIONS

REV DESCRIPTION

0 Preliminary issue

DATE APPROVED

11/29/10

TABLE OF CONTENTS

	PAGE
Purpose	1
Procedure EHP Calculation Powering	1 1 1
Given and Assumed Parameters	2
Conclusions Resistance Speed Propeller and RPM	2 2 3 4
References	4
Appendix A NavCad Output EMD Engine Data	
Appendix B	

TAKU Model Test Report

PURPOSE

The purpose of this report is to present the results of the speed and power estimate for the ALASKA CLASS FERRY. The subject vessel is a 350 ft long \times 74 ft wide \times 24 ft deep passenger vehicle ferry, and will be owned and operated by the Alaska Marine Highway System (AMHS). The vessel is intended for operation on inside-waters routes in the state of Alaska, and on international voyages to Canada.

PROCEDURE

EHP Calculation

NavCad 2009 software (Reference 1) is used to perform effective horsepower (EHP) calculations. Based on the vessel characteristics input into NavCad, the program is used to determine the best of dozens of widely accepted prediction methods to use for the prediction. NavCad then uses statistical regression to fit the vessel, based on its characteristics, into the matrix of existing performance data. The contribution of wind, wave and appendage data to resistance is included in the EHP calculation.

The "Holtrop 1984" method (References 2 and 3) is determined to be the most appropriate bare hull prediction method based on similarities in the hull data contained in that method to the subject vessel. Holtrop is a 3D method, meaning that it uses a form factor applied to the frictional resistance in addition to the normally used residuary coefficient and correlation allowance. This is a more modern method, and widely accepted to be more accurate than 2D methods which do not use a form factor.

No prediction method is perfect, and when sea trial data exists for similar vessels it is advantageous to compare actual results of sea trials to predictions so that accuracy can be verified or adjusted if necessary. The AMHS vessel M/V TAKU is the parent hull of the subject vessel, and as such, can be assumed to have a similar relation between predicted and actual resistance vs. powering curves. A "Holtrop 1984" prediction is performed for the TAKU, and the bare hull resistance prediction is compared to the sea trial data. Based on these results, the "Holtrop 1984" prediction method over predicts the resistance of the TAKU at speeds of greater than 14 knots. Therefore, no corrective margin is required for the prediction of the ALASKA CLASS FERRY, because the "Holtrop 1984" prediction will be conservative over the speed range being considered.

Powering

NavCad software is also used to size a propeller. The "B-Series" (References 5 and 6) regression is used because it is a widely used method for commercial vessel propellers.

A controllable pitch propeller (CPP) is used in this analysis. CPPs are used on many of the AMHS vessels because of the greater thrust control and reversibility they provide when maneuvering in port.

NavCad software has a routine that takes engine brake horsepower (BHP) curves and fuel consumption curves to simultaneously solve for optimal engine RPM and propeller pitch for a

given vessel speed. This method is used along with iteration of the propeller characteristics to find the highest vessel speed for each engine speed. Cavitation on the propellers is also considered. In accordance with commercial vessel recommendations of Reference 7, back cavitation is held below 5%.

The overall propulsive coefficient (OPC) is found once engine data and propeller characteristics are included in the propulsion analysis. An EMD engine model rated at 5000 BHP at 900 RPM is used in this analysis. Engine details are found in Appendix A.

The "combinator" solving routine is used to solve for the optimum propeller pitch and engine RPM which lies on the rated engine power curve. By solving for the optimum (most efficient) combination of RPM and pitch for given engine BHP values, the maximum vessel speed is calculated.

GIVEN AND ASSUMED PARAMETERS

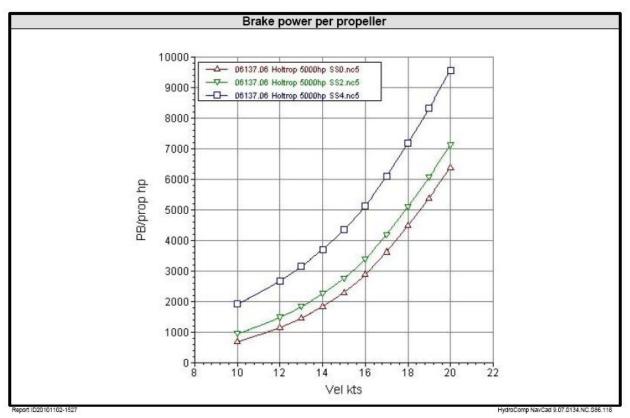
Waves in southeast Alaska generally do not become fully developed. Because of this, standard sea state data does not accurately represent the actual conditions which will be encountered by the vessel. Therefore, wind and sea state numbers are selected based on the historical data reported in Reference 9. The 99th percentile wave height correlates to Sea State 4, and the maximum 99th percentile wind speed is 34 knots. Sea States 2 and 0 are selected with 20 and 10 knots, respectively, to demonstrate performance in expected normal operating conditions.

See "NavCad Output / Hull Data" in the Appendix for vessel parameters and sea state inputs.

Design Speed = 17 knots, maximum of 5% back cavitation allowed at design speed.

Gear Ratio = 4.42. This number was chosen to keep linear velocity to between 80 and 90 feet per second at 0.7R of the propeller blade.

CONCLUSIONS


Resistance

Hull resistance is calculated before engine and propeller selections are made and include an allowance for appendages and bulbous bow. The resistance vs. speed curves for calm water with 10-knot head winds and for Sea States 2 and 4 are found in Appendix A.

Speed

Three conditions are analyzed to predict vessel speed for the specified engines at 80% and 100% (sprint) engine speeds. Shaft Horsepower (SHP) is given as well for comparison with the graphs included in Appendix A.

	5000 BHP (80% MCR)	5000 BHP (100% MCR)	Notes
Sea State 0	17.4 knots	18.6 knots	calm seas 10 knot head wind
Sea State 2	16.7 knots	17.9 knots	10 knot head wind1.0 foot waves - head seas
			20 knot head wind
Sea State 4	14.4 knots	15.8 knots	6.2 foot waves - head seas34 knot head wind

Propeller and RPM

The following describes the preliminary propeller. The characteristics of this propeller are to be refined by the vendor at a later stage of design.

Туре	Controllable Pitch Propeller	
Number of Blades	4	
Diameter	11 feet	15% tip clearance provided
Pitch	Varies	Pitch will be controlled at each running condition to optimize performance.
Expanded Area Ratio	0.640-0.670	Must be great enough to ensure less than 5% back cavitation.
RPM	224 maximum	Based on 90 fps rotational velocity at 0.7R.

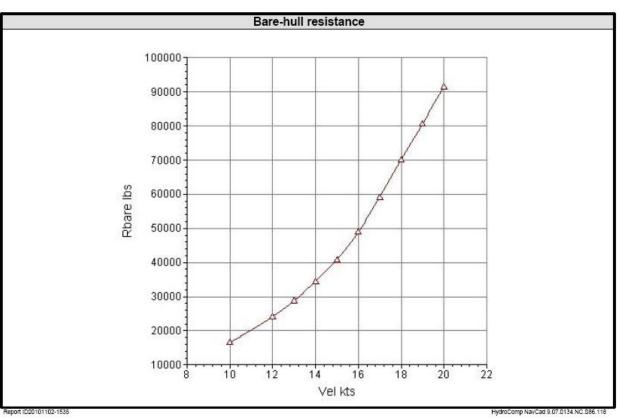
REFERENCES

- 1. NavCad 2009, HydroComp 2009.
- 2. "A Statistical Re-Analysis of Resistance and Propulsion Data," Holtrop, J., International Shipbuilding Progress, Vol. 31, No. 363, November 1984.
- 3. "An Approximate Power Prediction Method," Holtrop, J. and Mennen, G.G.J., International Shipbuilding Progress, Vol. 29, No. 335, July 1982.
- 4. "Report of Still Water Resistance Tests of a 352-Foot Twin Screw Alaskan Ferry," Moss, J.L., University of Michigan Office of Research Administration, Project 04629, July 1961.
- 5. "Further Computer-Analyzed Data of The Wageningen B-Screw Series," Oosterveld, M.W.C. and Oossanen, P. van, International Shipbuilding Progress, Vol. 22, No. 251, July 1975.
- 6. Blount, D.L. and Hubble, E.N., "Sizing Segmental Section Commercially Available Propellers for Small Craft," SNAME Propeller Symposium, 1981.
- 7. Burrill Cavitation Diagram, PNA Vol. II, SNAME, 1988.
- 8. Vessel Rhino Model, 06137-006-800-1, Rev. P0, EBDG.
- 9. AMHS Vessel Suitability Study, Task 1 Report, File No. 99095, The Glosten Associates, Inc., March 23, 2000.

Appendix A

NavCad Output

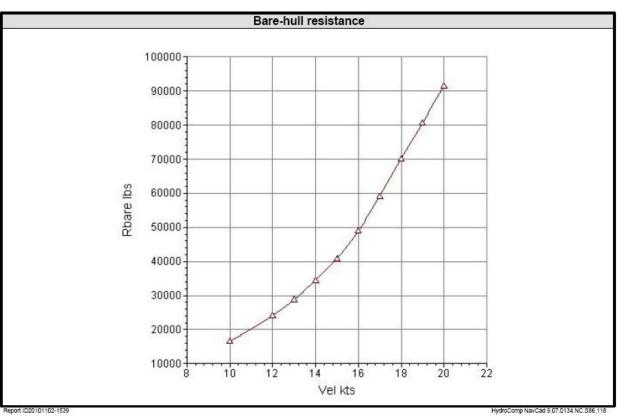
EMD Engine Data


		Analysis	s parameters		
Bare-hull drag[Calc] Holtrop 1984Friction lineHughesTechniquePredictionAlign to[Off]Align by[Off]Correlation allowance0.00034Roughness (mm)[On] 0.73D form factor[On] 1.2398Speed dependent corr[Off]		Appendage added drag Wind added drag Seas added drag Channel added drag Margin Water type Mass density Kinematic viscosity		[Calc] Holtrop 1988 [Calc] Taylor head wind [Calc] NavSea small nava [Off] [Off] Standard Salt 1.9905 slug/ft3 1.2791e-05 ft2/s	
		Hu	ull data		
[General] Length between PP WL bow pt aft FP Length on WL Max beam on WL Max model draft Displacement bare Wetted surface Chine type [Principal parameter Lwl/B B/T Cb Cws	rs]	330.260 ft 0.000 ft 330.260 ft 64.180 ft 16.000 ft 4364.40 LT 20093.400 ft2 Round bilge 5.1458 4.0113 0.4501 2.8299	[Ct-based] Max section area Waterplane area Trim by stern LCB aft of FP Bulb ext fwd FP Bulb area at FP Bulb ctr above BL Transom area Transom beam Transom draft Half ent angle Bow shape Stern shape		[Cx 0.734] 754.100 ft2 [Cw 0.745] 15798.000 ft2 0.000 ft [0.513 Lpp] 169.300 ft 10.000 ft 75.000 ft2 6.750 ft [0.025 Ax] 19.000 ft2 [0.288 B] 18.510 ft [0.094 T] 1.500 ft 12.90 deg [Normal] Average flow [Normal] Average flow
		Prediction	method check		[·······]····· 0 ·····
Parameters Fn(Lwl) Fn-high Lwl/Bwl Bwl/T Cp(Lwl) Lambda	Holtrop 1 0.16 0.33 5.15 4.01 0.61 0.73	984 0.10.609 0.10.609 3.914.9 2.14 * 0.550.85 00.85	*:	= Outside	parameter limit
		Арр	endages		
Rudders Shaft brackets Skeg Strut bossing Hull bossing	[Coef] 1.35 4.00 1.75 3.50 2.00	[Wetted value] 413.000 ft2 124.000 ft2 900.000 ft2 0.000 ft2 0.000 ft2	Exposed shafts Stablizer fins Dome Bilge keel Bow thruster diam	[Coef] 2.00 2.80 2.70 1.40 0.01	[Wetted value] 242.000 ft2 384.000 ft2 0.000 ft2 440.000 ft2 4.000 ft

NAVCAD INPUT

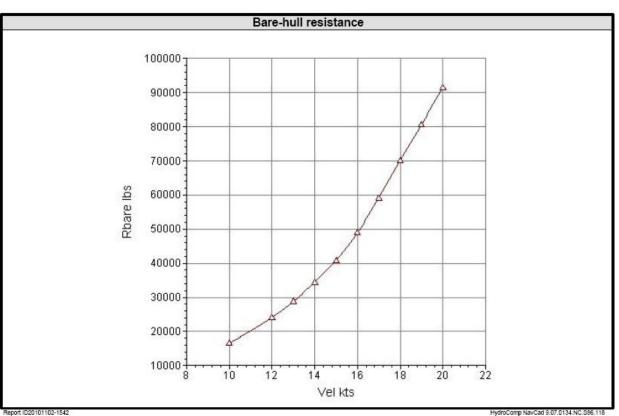
Report ID20101102-1539

SYMBOLS AND VALUES


Symbols and values
Vel = Ship speed
PEtotal = Total effective power WakeFr = Taylor wake fraction coefficient ThrDed = Thrust deduction coefficient RelRot = Relative-rotative efficiency EngRPM = Engine RPM PB/prop = Break power per propeller Pitch CPP pitch
PropRPM = Propeller RPM PropEff = Propeller open-water efficiency HullEff = Hull efficiency = (1-ThrDed) / (1-WakeFr) OPC = Overall propulsive coefficient Thrust = Total open-water thrust Thr/prop = Open-water thrust per propeller DelThr = Total delivered thrust
Torque = Propeller open water torque PD/prop = Delivered power per propeller PS/prop = Shaft power per propeller PBtotal = Total brake power Fuel/eng = Fuel consumption per engine
J = Advance coefficient Kt = Thrust coefficient (for horizontal thrust vector) Kq = Torque coefficient Kt/J2 = Propeller thrust-speed ratio Kq/J3 = Propeller torque-speed ratio
SigmaV = Cavitation number based on advance velocity (Va) SigmaN = Cavitation number based on rotational velocity (nD) Sigma7R = Cavitation number based on helix velocity at 0.7 radius %CavAvg = Average percent back cavitation %CavPeak = Peak percent back cavitation (from shaft angle effects) Press = Average propeller blade pressure MiniBAR = Minimum recommended expanded blade area ratio
PropRn = Propeller Reynolds number Cth = Propeller thrust loading coefficient Cp = Propeller power loading coefficient MinP/D = Minimum P/D ratio to avoid face cavitation TipSpd = Linear velocity of the propeller tips
 * = Propulsive coefficient prediction exceeds speed parameter ** = Exceeds cavitation criteria *** = Cavitation breakdown is indicated

RESISTANCE VS. SPEED IN SEA STATE 0

	Prediction results							
Vel [kts]	Fn	Rn	Cf	[Cform]	[Cw]	Cr	Ct	
10.00	0.164	4.36e+8	0.001511	0.000362	0.000384	0.000746	0.002914	
12.00	0.196	5.23e+8	0.001475	0.000354	0.000457	0.000811	0.002943	
13.00	0.213	5.67e+8	0.001460	0.000350	0.000531	0.000881	0.002998	
14.00	0.229	6.10e+8	0.001446	0.000347	0.000633	0.000980	0.003083	
15.00	0.246	6.54e+8	0.001433	0.000344	0.000759	0.001102	0.003193	
16.00	0.262	6.97e+8	0.001422	0.000341	0.000940	0.001281	0.003359	
17.00	0.278	7.41e+8	0.001411	0.000338	0.001183	0.001521	0.003589	
18.00	0.295	7.84e+8	0.001401	0.000336	0.001405	0.001741	0.003798	
19.00	0.311	8.28e+8	0.001391	0.000334	0.001542	0.001876	0.003924	
20.00	0.327	8.72e+8	0.001382	0.000331	0.001640	0.001971	0.004010	
Vel [kts]	Rw/W	Rr/W	Rbare/W	Rw [lbs]	Rr [lbs]	Rbare [lbs]	PEbare [hp]	
10.00	0.00022	0.00043	0.00170	2185	4249	16598	509	
12.00	0.00038	0.00068	0.00247	3751	6653	24144	889	
13.00	0.00052	0.00087	0.00295	5115	8486	28867	1152	
14.00	0.00072	0.00112	0.00352	7068	10941	34422	1479	
15.00	0.00099	0.00145	0.00419	9724	14130	40923	1884	
16.00	0.00140	0.00191	0.00501	13706	18678	48990	2405	
17.00	0.00199	0.00256	0.00604	19474	25044	59085	3082	
18.00	0.00265	0.00329	0.00717	25936	32135	70110	3873	
19.00	0.00324	0.00395	0.00825	31717	38578	80693	4705	
20.00	0.00382	0.00460	0.00935	37372	44925	91386	5609	
Vel [kts]	Rapp [lbs]	Rwind [lbs]	Rseas [lbs]	Rchan [lbs]	Rmisc [lbs]	Rtotal [lbs]	PEtotal [hp]	
10.00	2663	7089	0	0	0	26350	809	
12.00	3765	8702	0	0	0	36612	1348	
13.00	4384	9571	0	0	0	42822	1708	
14.00	5048	10481	0	0	0	49951	2146	
15.00	5755	11432	0	0	0	58110	2675	
16.00	6507	12424	0	0	0	67922	3335	
17.00	7303	13458	0	0	0	79846	4165	
18.00	8143	14533	0	0	0	92786	5125	
19.00	9026	15650	0	0	0	105368	6144	
20.00	9952	16808	0	0	0	118145	7251	


ind Speed 10.00 kts Sig wave height 0.000 ft rige off bow 0.00 deg Modal wave period 0 sec ansv hull area 2265.700 ft2 Channel 2 2E above WL 32.040 ft Channel width 0.000 ft 2E hov transom 320.000 ft Channel width 0.000 ft 2E above WL 64.950 ft Slope side 0.000 ft 2E hov transom 275.000 ft Channel depth 0.000 ft 2E above WL 64.950 ft Slope side 0.000 ft 2E above WL 43.450 ft Channel depth 0.000 ft 2E above WL 43.450 ft Stope side 0.000 ft 2E above WL 43.450 ft Stope side 0.000 ft 2E not massom 176.500 ft Index stope side 0.000 ft 2E not wave Free stream Utype Pasenger C1 = Frictional resistance coefficient C1 = Frictional resistance coefficient C1 = Frictional resistance coefficient C2 (CV) Wave-making resistance component C1 = Total bare-hull resistance weight ment ratio		Enviro	onment data	
ngle off bow 0.00 deg Modal wave period 0 sec ansv hull area 2265.700 ft2 CE above WL 32.040 ft Channel width 0.000 ft ansv superst area 2494.500 ft Channel width 0.000 ft ansv superst area 2494.500 ft Supe side 0.00 deg 2E fwd transom 275.000 ft Wetted hull girth 0.000 ft LE fwd transom 275.000 ft Wetted hull girth 0.000 ft CE above WL 64.350 ft Supe side 0.000 deg 2E fwd transom 176.500 ft Into 1000 ft CE above WL 43.450 ft DE fwd transom 176.500 ft Into 1000 ft CE fwd transom 176.500 ft Into 1000 ft CE fwd transom 176.500 ft Ind location Free stream ull type Passenger	[Wind]		[Seas]	
ansv hull area 2265.700 ft2 Er above WU. 32.040 ft [Channel] Er Mot ransom 320.000 ft Channel width 0.000 ft ansv superst area 2444.500 ft2 Channel depth 0.000 ft CE above WU. 64.950 ft Slope side 0.00 deg Er Mot ransom 275.000 ft Wetted hull girth 0.000 ft tal long1 area 17088.000 ft2 Channel depth 0.000 ft Es above WU. 43.450 ft Es above WU. 43.450 ft Es Mot ransom 176.500 ft ind location Free stream uil type Passenger Fn = Length Froude number Rn = Reynolds number Rn = Reynolds number Cf = Frictional resistance coefficient [Cform] = Viscous form resistance coefficient [Cform] = Viscous form resistance coefficient Cf = Trictional resistance coefficient Ct = Total bare-hull resistance coefficient Rn WW Wave-making resistance coefficient Ct = Total bare-hull resistance coefficient Rn Reynolds numler Rr = Residuary resistance coefficient Rower-making resistance coefficient RrW = Bare-hull resistance coefficient RrW = Bare-hull resistance coefficient RrW = Bare-hull resistance coefficient RrW = Bare-hull resistance component Rr = Residuary resistance component Rr = Residuary resistance component Rr = Bare-hull resistance component Rr = Bare-hull resistance component Rr = Bare-hull resistance PEbare = Bare-hull resistance Rexea = Additional appendage resistance Richan = Additional vind vind resistance Richan = Additional vind resistance Richan = Additional v	Wind Speed	10.00 kts	Sig wave height	0.000 ft
CE above WL 32.040 ft [Channel] Ef wd transom 320.000 ft Channel width 0.000 ft Sen wat transom 320.000 ft Channel width 0.000 ft De wat transom 275.000 ft Wetted hull girth 0.000 ft De wat transom 275.000 ft Wetted hull girth 0.000 ft De wat transom 275.000 ft Wetted hull girth 0.000 ft De wat transom 17058.000 ft2 Channel depth 0.000 ft De wat transom 176.500 ft Inia location Ft Ind location Free stream Wetted hull girth 0.000 ft De wat transom 176.500 ft Inia location Ft Ft Ind location Free stream Wat transom Inia location Ft Ind location Free stream Wat transom Inia location Ft Ind location Free stream Wat transom Inia location Inia location Ind location Free stream Wat transom Inia location Inia location Inia location Ind location Free stream Wat transistance coefficient I	Angle off bow	0.00 deg	Modal wave period	0 sec
2E fwd transom 320.000 ft Channel width 0.000 ft ansv superst area 2494.500 ft Stope side 0.000 ft CE above VVL 64.950 ft Stope side 0.000 ft DE fwd transom 275.000 ft Wetted hull girth 0.000 ft DE fwd transom 17088.000 ft2 Channel depth 0.000 ft DE above VVL 43.450 ft D D D D T DE fwd transom 176.500 ft Note of th D	Transv hull area	2265.700 ft2		
ansv superst area 2494.500 ft2 Channel depth 0.000 ft CE above VVL 64.950 ft Stope size 0.000 ft DE dat longi area 17088.000 ft2 Channel depth 0.000 ft total longi area 17088.000 ft2 Channel depth 0.000 ft CE above VVL 43.460 ft CE hovd transom 176.500 ft Ind location Free stream ull type Passenger Symbols and values Fri = Length Froude number Rn = ReynoldS number Cf = Frictional resistance coefficient (Com) = Wave-making resistance coefficient Cf = Frictional resistance coefficient Cf = Frictional resistance coefficient Cf = Frictional resistance coefficient Cf = Frictional resistance coefficient Cf = ReynoldS number Cf = Reisdiuary resistance coefficient Cf = Reisdiuary resistance coefficient Cf = Reisdiuary resistance coefficient Cf = Reisdiuary resistance coefficient Cf = Reisdiuary resistance-weight merit ratio RrW = Residuary resistance-weight merit ratio RrW = Residuary resistance component Rr = Reisdiuary resistance component Rr = Residuary resistance Rrbar = Bare-hull resistance Rrbar = Bare-hull resistance Rrbar = Additional appendage resistance Rrbar = Dare-hull resistance Rrbar = Additional channel resistance Rrbar = Total vessel resist	VCE above WL	32.040 ft	[Channel]	
CE above WL 64.950 ft Slope side 0.00 deg E fwd transom 275.000 ft Wetted hull girth 0.000 ft Atal longl area 17088.000 ft2 Channel depth 0.000 ft CE above WL 43.450 ft CE above WL 43.450 ft CE datore WL 43.450 ft CE datore WL 43.450 ft Symbols and values F n = Length Froude number R = Reynolds number Cf = Frictional resistance coefficient (Cform] = Viscous form resistance coefficient Cf = Residuary resistance-weight merit ratio Rww = Wave-making resistance component Re = Bare-hull resistance component Re = Bare-hull resistance component Rape = Additional appendage resistance Resas = Additional sea-state resistance Resas = Additional sea-state resistance Resas = Additional sea-state resistance Resas = Additional sea-state resistance Retain = Total effective power Fin = Depth based Froude number Squat = Sinkage due to shallow water effects Sqrittin = Tim due to shallow water effects * Earce-hull drag prediction exceed speed parameter * Exceeds parameter limit	LCE fwd transom	320.000 ft	Channel width	0.000 ft
CE hvd transom 275.000 ft Wetted hull girth 0.000 ft tal longi area 17088.000 ft2 Channel depth 0.000 ft CE above WL 43.450 ft 0.000 ft 0.000 ft DE fwd transom 176.500 ft Channel depth 0.000 ft DE fwd transom 176.500 ft Vetted hull girth 0.000 ft DE fwd transom 176.500 ft Vetted hull girth 0.000 ft DE fwd transom 176.500 ft Vetted hull girth 0.000 ft DE fwd transom 176.500 ft Vetted hull girth 0.000 ft DE fwd transom 176.500 ft Vetted hull girth 0.000 ft DE fwd transom 176.500 ft Vetted hull girth 0.000 ft DE fwd transom 176.500 ft Vetted hull girth 0.000 ft DE fwd transom 176.500 ft Vetted hull girth 0.000 ft DE fwd transom Passenger Vetted hull girth 0.000 ft DE fwd transom Passenge filth Filth 0.000 ft DE fwd transom Passenge filth 0.000 ft 0.000 ft DE fwd transom Passenee hull resistance coefficient<	Transv superst area	2494.500 ft2	Channel depth	0.000 ft
btal longi area 17088.000 ft2 Channel depth 0.000 ft 2E above VVL 43.450 ft 2E hwd transom 178.500 ft ind location Free stream uil type Passenger Symbols and values Symbols and values Fn = Length Froude number R Reynolds number C f Frictional resistance coefficient [Cform] = Viscous form resistance coefficient [Cform] = Viscous form resistance coefficient [Cform] = Viscous form resistance coefficient C r Residuary resistance coefficient [Cform] = Viscous form resistance coefficient C r a Residuary resistance coefficient RwW = Wave-making resistance-weight merit ratio RrW = Wave-making resistance-weight merit ratio Rkbare/W = Bare-hull resistance-weight merit ratio RrW = Wave-making resistance component Rbare ab are-hull resistance Residuary resistance component Rbare Bare-hull resistance Rwind = Additional appendage resistance Rwind = Additional appendage resistance Rwind = Additional vind resistance Robare = Bare-hull effectibe power Rhan = Additional vind resistance Rkbare = Bare-hull effective power Rhan = Additional come resistance <td>VCE above WL</td> <th>64.950 ft</th> <td>Slope side</td> <td>0.00 deg</td>	VCE above WL	64.950 ft	Slope side	0.00 deg
CE above WL 43.450 ft 2E twd transom 176.500 ft ind location Free stream jill type Passenger Symbols and values Fn = Length Froude number Rn = Reynolds number C = Frictional resistance coefficient [Cform] = Viscous form resistance coefficient C = Residuary resistance coefficient C = Residuary resistance coefficient Rt = Residuary resistance component Rt = Residuary resistance component Rt = Residuary resistance Rtbare B are-hull resistance Rtbare B are-hull resistance Rtseas = Additional appendage resistance Rtwind = Additional appendage resistance Rtbare Additional vanent resistance Rtbare Additional channel resistance Rtbare Total vessel resistan	LCE fwd transom	275.000 ft	Wetted hull girth	0.000 ft
CE kwd transom 176.500 ft Ind location Free stream uil type Passenger Symbols and values Symbols and values Fn = Length Froude number Rn = Reynolds number CI = Frictional resistance coefficient [Cform] = Viscous form resistance coefficient [Cform] = Viscous form resistance coefficient [Cform] = Viscous form resistance coefficient CT = Residuary resistance coefficient CT = Residuary resistance-weight merit ratio RrW = Wave-making resistance-weight merit ratio RrW = Wave-making resistance-weight merit ratio RrW = Wave-making resistance-weight merit ratio RrW = Wave-making resistance-weight merit ratio RrW = Wave-making resistance component Rubare-W = Bare-hull resistance Rwing resistance Rubare = Bare-hull effectibe power Rape = Additional appendage resistance Rwind = Additional appendage resistance Rwind = Additional isea-state resistance Rubare = Bare-hull effectibe power Robare = Additional channel resistance Rubare = Additional isea-state resistance Rwind = Additional isea-state resistance Rubare = Additional channel resistance Risel = Total effective power Rubare = Additional channel resistance Risel = Tota	Total longl area	17088.000 ft2	Channel depth	0.000 ft
Ind location ult type Free stream Passenger Symbols and values Fn = Length Froude number Rn = Reynolds number C = Frictional resistance coefficient [Cform] = Viscous form resistance coefficient [Cform] = Viscous form resistance coefficient C'm = Residuary resistance coefficient C = Total bare-hull resistance coefficient C = Total bare-hull resistance coefficient C = Total bare-hull resistance coefficient Rw/W = Wave-making resistance coefficient C = Total bare-hull resistance coefficient Rw/W = Wave-making resistance coefficient Rw/W = Wave-making resistance-weight merit ratio Rr/W = Bare-hull resistance-weight merit ratio Rbare/W = Bare-hull resistance component Rr = Residuary resistance component Rr = Residuary resistance component Rape = Additional appendage resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Resas = Additional appendage resistance Resas = Additional appendage resistance Resas = Additional isea-state resistance Resas = Additional isea-state resistance Resas = Miscellaneous resistance Resas = Miscellaneous resistance Resas = Miscellaneous resistance Ritota = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total vessel resistance Ritotal = Total vessel resistance Squtar = Sinkage due to shallow water effects Squtar = Sinkage due to shallow water effects Squtar = Sinkage due to shallow water effects Squtar = Tim due to shallow water effects = Bare-hull drag prediction exceeds speed parameter * = Exceeds parameter limit	VCE above WL	43.450 ft		
Symbols and values Fn = Length Froude number Rn = Reynolds number Cf = Frictional resistance coefficient [Cform] = Viscous form resistance coefficient Cr = Total bare-hull resistance-weight merit ratio Rt/W = Wave-making resistance-weight merit ratio Rt/W = Residuary resistance component Rt = Residuary resistance component Rt = Residuary resistance component Rt = Residuary resistance Rabare = Bare-hull resistance PEbare = Bare-hull resistance Revine = Additional appendage resistance Rwind = Additional wind resistance Rubare = Additional sea-state resistance Rubare = Additional und resistance Riscellaneous resistance Rubare = Additional vessel resistance	LCE fwd transom	176.500 ft		
Symbols and values Fn = Length Froude number Rn = Reynolds number Cf = Frictional resistance coefficient [Cform] = Viscous form resistance coefficient [Cw] = Wave-making resistance coefficient Cr = Residuary resistance coefficient Cr = Residuary resistance coefficient Cr = Residuary resistance-weight merit ratio RrW = Wave-making resistance-weight merit ratio RrW = Residuary resistance-weight merit ratio Rbare-Null resistance-weight merit ratio Rbare-Null resistance-weight merit ratio Rbare-Null resistance-weight merit ratio Rbare-Null resistance component Rr = Residuary resistance component Rbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional ind resistance Rwind = Additional isea-state resistance Rchan = Additional ichannel resistance Rmisc = Miscellaneous resistance Ribet = Total effective power Fh = Depth based Froude number Squat = Sinkage due to shallow water effects SqfTim = Trim due to shallow water effects SqfTim = Trim due to shallow water effects SqfTim = Trim due to shallow water effects * = Bare-	Wind location	Free stream		
Fn = Length Froude number Rn = Reynolds number Cf = Frictional resistance coefficient [Cfwi] = Viscous form resistance coefficient [Cw] = Wave-making resistance coefficient Cr = Residuary resistance coefficient Ct = Total bare-hull resistance-weight ment ratio RrW = Wave-making resistance-weight ment ratio RrW = Residuary resistance-weight ment ratio RtWW = Bare-hull resistance-weight ment ratio Rbare/W = Bare-hull resistance component Rt = Residuary resistance component Rt = Residuary resistance Rebare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional ind resistance Rwind = Additional ind resistance Ristance Residuary resistance Ristance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional ind resistance Rotal = Total vesel resistance Risc = Miscellaneous resistance Risc = Miscellaneous resistance Risc = Miscellaneous resistance Refit Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number <td>Hull type</td> <th>Passenger</th> <td></td> <td></td>	Hull type	Passenger		
Rn = Reynolds number Cf = Frictional resistance coefficient [Cform] = Viscous form resistance coefficient [Cw] = Wave-making resistance coefficient Cr = Residuary resistance coefficient Ct = Total bare-hull resistance coefficient Rw/W = Wave-making resistance-weight merit ratio RrW = Residuary resistance-weight merit ratio Rbare/W = Bare-hull resistance-weight merit ratio Rbare/W = Bare-hull resistance component Rr = Residuary resistance component Rr = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional appendage resistance Rchan = Additional sea-state resistance Rchan = Additional vind resistance Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit		Symbo	Is and values	
Cf = Frictional resistance coefficient [Cform] = Viscous form resistance coefficient [Cw] = Wave-making resistance coefficient Cr = Residuary resistance coefficient Rw/W = Wave-making resistance-weight merit ratio Rr/W = Residuary resistance-weight merit ratio Rbare/W = Bare-hull resistance-weight merit ratio Rbare/W = Bare-hull resistance-weight merit ratio Rbare/W = Bare-hull resistance component R = Residuary resistance component R = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull resistance PEbare = Bare-hull resistance Rapp = Additional appendage resistance Rwind = Additional appendage resistance Resas = Additional appendage resistance Rchan = Additional channel resistance Rchan = Additional channel resistance Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Fn =	Length Froude number		
[Cform] = Viscous form resistance coefficient [Cw] = Wave-making resistance coefficient Cr = Residuary resistance coefficient Rw/W = Wave-making resistance-weight merit ratio Rr/W = Residuary resistance-weight merit ratio Rbare/W = Bare-hull resistance-weight merit ratio Rbare/W = Bare-hull resistance-weight merit ratio Rw = Wave-making resistance component Rr = Residuary resistance component Rr = Residuary resistance component Rape = Bare-hull resistance PEbare = Bare-hull resistance Residuary appendage resistance Rwind = Additional appendage resistance Rseas = Additional appendage resistance Rchan = Additional vind resistance Rchan = Additional isea-state resistance Rchan = Additional isea-state resistance Rtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rn =	Reynolds number		
[Cw] = Wave-making resistance coefficient Cr = Residuary resistance coefficient Ct = Total bare-hull resistance coefficient Rw/W = Wave-making resistance-weight merit ratio Rr/W = Residuary resistance-weight merit ratio Rbare/W = Bare-hull resistance-weight merit ratio Rw = Wave-making resistance component Rr = Residuary resistance component Rt = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional wind resistance Rease = Additional sea-state resistance Rchan = Additional sea-state resistance Rchan = Additional channel resistance Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Cf =	Frictional resistance coefficier	nt	
Cr = Residuary resistance coefficient Ct = Total bare-hull resistance coefficient Rw/W = Wave-making resistance-weight merit ratio Rr/W = Residuary resistance-weight merit ratio Rbare/W = Bare-hull resistance-weight merit ratio Rw = Wave-making resistance component Rr = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull refictibe power Rapp = Additional appendage resistance Rwind = Additional appendage resistance Reseas = Additional appendage resistance Rchan = Additional sea-state resistance Rchan = Additional channel resistance Rtotal = Total vessel resistance Rtotal = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total vessel resistance Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	[Cform] =	Viscous form resistance coeff	ficient	
Ct = Total bare-hull resistance coefficient Rw/W = Wave-making resistance-weight merit ratio Rr/W = Residuary resistance-weight merit ratio Rbare/W = Bare-hull resistance component Rw = Wave-making resistance component Rr = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional appendage resistance Resas = Additional sea-state resistance Rchan = Additional channel resistance Rtotal = Total vessel resistance Rtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	[Cw] =	Wave-making resistance coef	fficient	
Rw/W = Wave-making resistance-weight merit ratio Rr/W = Residuary resistance-weight merit ratio Rbare/W = Bare-hull resistance component Rw = Wave-making resistance component Rr = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rchan = Additional channel resistance Rtotal = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Cr =	Residuary resistance coefficie	ent	
Rr/W = Residuary resistance-weight merit ratio Rbare/W = Bare-hull resistance-weight merit ratio Rw = Wave-making resistance component Rr = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull resistance Rapp = Additional appendage resistance Rwind = Additional appendage resistance Rwind = Additional appendage resistance Rkchan = Additional sea-state resistance Rchan = Additional channel resistance Rtotal = Total vessel resistance Rtotal = Total effective power Fhh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Ct =	Total bare-hull resistance coe	efficient	
Rbare/W = Bare-hull resistance-weight merit ratio Rw = Wave-making resistance component Rr = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rmisc = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rw/W =	Wave-making resistance-weig	ght merit ratio	
Rw = Wave-making resistance component Rr = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rchan = Additional channel resistance Rtotal = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rr/W =	Residuary resistance-weight	merit ratio	
Rr = Residuary resistance component Rbare = Bare-hull resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional appendage resistance Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rchan = Additional channel resistance Rthis = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rbare/W =	Bare-hull resistance-weight m	nerit ratio	
Rbare = Bare-hull resistance PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rmisc = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rw =	Wave-making resistance com	iponent	
PEbare = Bare-hull effectibe power Rapp = Additional appendage resistance Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rmisc = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rr =	Residuary resistance compor	nent	
Rapp = Additional appendage resistance Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rmisc = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rbare =	Bare-hull resistance		
Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rmisc = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	PEbare =	Bare-hull effectibe power		
Rwind = Additional wind resistance Rseas = Additional sea-state resistance Rchan = Additional channel resistance Rmisc = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rapp =	Additional appendage resista	nce	
Rchan = Additional channel resistance Rmisc = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit				
Rmisc = Miscellaneous resistance Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rseas =	Additional sea-state resistance	æ	
Rtotal = Total vessel resistance PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rchan =	Additional channel resistance		
PEtotal = Total effective power Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit				
Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	Rtotal =	Total vessel resistance		
Fnh = Depth based Froude number Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit	PEtotal =	Total effective power		
Squat = Sinkage due to shallow water effects SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit				
SqTrim = Trim due to shallow water effects * = Bare-hull drag prediction exceeds speed parameter ** = Exceeds parameter limit		•		
** = Exceeds parameter limit		•		
** = Exceeds parameter limit	* =	Bare-hull drag prediction exce	eeds speed parameter	
is evaluation has been earefully prepared to meet prefereional standards. Since it is not respille to determine the expression of provided data. Sili-4 Day Davies Ore-			F Fan annoren	
is evaluation has been carefully prepared to meet professional standards. Since it is not possible to determine the accuracy of provided data, Elliott Bay Design Grou	This evaluation has been carefully prepar	ed to meet professional standards. Sin	ce it is not possible to determine the accurat	y of provided data, Elliott Bay Design Group
sumes no liability nor makes any performance guarantees of any kind.	assumes no liability nor makes any perfor	mance guarantees of any kind.		

RESISTANCE VS. SPEED IN SEA STATE 2

			Predic	tion results			
Vel [kts]	Fn	Rn	Cf	[Cform]	[Cw]	Cr	Ct
10.00	0.164	4.36e+8	0.001511	0.000362	0.000384	0.000746	0.002914
12.00	0.196	5.23e+8	0.001475	0.000354	0.000457	0.000811	0.002943
13.00	0.213	5.67e+8	0.001460	0.000350	0.000531	0.000881	0.002998
14.00	0.229	6.10e+8	0.001446	0.000347	0.000633	0.000980	0.003083
15.00	0.246	6.54e+8	0.001433	0.000344	0.000759	0.001102	0.003193
16.00	0.262	6.97e+8	0.001422	0.000341	0.000940	0.001281	0.003359
17.00	0.278	7.41e+8	0.001411	0.000338	0.001183	0.001521	0.003589
18.00	0.295	7.84e+8	0.001401	0.000336	0.001405	0.001741	0.003798
19.00	0.311	8.28e+8	0.001391	0.000334	0.001542	0.001876	0.003924
20.00	0.327	8.72e+8	0.001382	0.000331	0.001640	0.001971	0.004010
Vel [kts]	Rw/W	Rr/W	Rbare/W	Rw [lbs]	Rr [lbs]	Rbare [lbs]	PEbare [hp
10.00	0.00022	0.00043	0.00170	2185	4249	16598	509
12.00	0.00038	0.00068	0.00247	3751	6653	24144	889
13.00	0.00052	0.00087	0.00295	5115	8486	28867	1152
14.00	0.00072	0.00112	0.00352	7068	10941	34422	1479
15.00	0.00099	0.00145	0.00419	9724	14130	40923	1884
16.00	0.00140	0.00191	0.00501	13706	18678	48990	2405
17.00	0.00199	0.00256	0.00604	19474	25044	59085	3082
18.00	0.00265	0.00329	0.00717	25936	32135	70110	3873
19.00	0.00324	0.00395	0.00825	31717	38578	80693	4705
20.00	0.00382	0.00460	0.00935	37372	44925	91386	5609
Vel [kts]	Rapp [lbs]	Rwind [lbs]	Rseas [lbs]	Rchan [lbs]	Rmisc [lbs]	Rtotal [lbs]	PEtotal [hp]
10.00	2663	15115	245	0	0	34621	1062
12.00	3765	17433	236	0	0	45579	1678
13.00	4384	18654	232	0	0	52137	2080
14.00	5048	19916	228	0	0	59613	2561
15.00	5755	21219	223	0	0	68121	3136
16.00	6507	22564	219	0	0	78281	3844
17.00	7303	23950	215	0	0	90552	4724
18.00	8143	25377	211	0	0	103840	5736
19.00	9026	26846	207	0	0	116771	6808
20.00	9952	28356	204	0	0	129897	7972

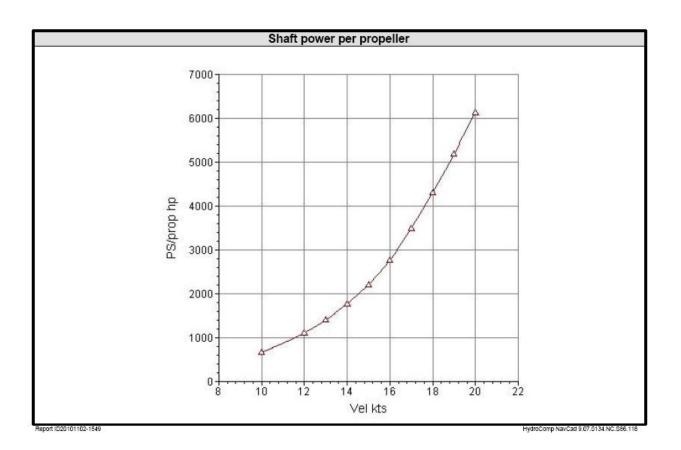
	Enviro	onment data	
[Wind]		[Seas]	
Wind Speed	20.00 kts	Sig wave height	1.000 ft
Angle off bow	0.00 deg	Modal wave period	6.3 sec
Transv hull area	2265.700 ft2	····	
VCE above WL	32.040 ft	[Channel]	
LCE fwd transom	320.000 ft	Channel width	0.000 ft
Transv superst area	2494.500 ft2	Channel depth	0.000 ft
VCE above WL	64.950 ft	Slope side	0.00 deg
LCE fwd transom	275.000 ft	Wetted hull girth	0.000 ft
Total longl area	17088.000 ft2	Channel depth	0.000 ft
VCE above WL	43.450 ft	ondimer deptir	0.000 11
LCE fwd transom	176.500 ft		
Wind location	Free stream		
Hull type	Passenger		
i i uli type	-		
	-	Is and values	
0	Froude number		
Rn = Reynol			
	al resistance coefficie		
[Cform] = Viscous	form resistance coef	ficient	
[Cw] = Wave-n	naking resistance coe	fficient	
	ary resistance coeffici		
Ct = Total ba	are-hull resistance coe	efficient	
Rw/W = Wave-n	naking resistance-wei	ght merit ratio	
Rr/W = Residua	ary resistance-weight	merit ratio	
Rbare/W = Bare-hu	Ill resistance-weight n	nerit ratio	
Rw = Wave-n	naking resistance con	ponent	
	ary resistance compor		
Rbare = Bare-hu	· ·		
PEbare = Bare-hu	III effectibe power		
Papp = Addition	nal appendage resista	nce	
	al wind resistance	nec	
	nal sea-state resistance		
		-	
	nal channel resistance		
	aneous resistance		
Rtotal = Total ve			
PEtotal = Total ef			
-	ased Froude number		
	e due to shallow water		
SqTrim = Trim du	e to shallow water eff	ects	
* = Bare-hu	Ill drag prediction exc	eeds speed parameter	
** = Exceed	s parameter limit	-	
This evaluation has been carefully prepared to meet		ce it is not possible to determine the a	ccuracy of provided data, Elliott Bay Design Group
assumes no liability nor makes any performance gu	arantees of any kind.		

RESISTANCE VS. SPEED IN SEA STATE 4

			Predic	tion results			
√el [kts]	Fn	Rn	Cf	[Cform]	[Cw]	Cr	Ct
10.00	0.164	4.36e+8	0.001511	0.000362	0.000384	0.000746	0.002914
12.00	0.196	5.23e+8	0.001475	0.000354	0.000457	0.000811	0.002943
13.00	0.213	5.67e+8	0.001460	0.000350	0.000531	0.000881	0.002998
14.00	0.229	6.10e+8	0.001446	0.000347	0.000633	0.000980	0.003083
15.00	0.246	6.54e+8	0.001433	0.000344	0.000759	0.001102	0.003193
16.00	0.262	6.97e+8	0.001422	0.000341	0.000940	0.001281	0.003359
17.00	0.278	7.41e+8	0.001411	0.000338	0.001183	0.001521	0.003589
18.00	0.295	7.84e+8	0.001401	0.000336	0.001405	0.001741	0.003798
19.00	0.311	8.28e+8	0.001391	0.000334	0.001542	0.001876	0.003924
20.00	0.327	8.72e+8	0.001382	0.000331	0.001640	0.001971	0.004010
√el [kts]	Rw/W	Rr/W	Rbare/W	Rw [lbs]	Rr [lbs]	Rbare [lbs]	PEbare [hp
10.00	0.00022	0.00043	0.00170	2185	4249	16598	509
12.00	0.00038	0.00068	0.00247	3751	6653	24144	889
13.00	0.00052	0.00087	0.00295	5115	8486	28867	1152
14.00	0.00072	0.00112	0.00352	7068	10941	34422	1479
15.00	0.00099	0.00145	0.00419	9724	14130	40923	1884
16.00	0.00140	0.00191	0.00501	13706	18678	48990	2405
17.00	0.00199	0.00256	0.00604	19474	25044	59085	3082
18.00	0.00265	0.00329	0.00717	25936	32135	70110	3873
19.00	0.00324	0.00395	0.00825	31717	38578	80693	4705
20.00	0.00382	0.00460	0.00935	37372	44925	91386	5609
√el [kts]	Rapp [lbs]	Rwind [lbs]	Rseas [lbs]	Rchan [lbs]	Rmisc [lbs]	Rtotal [lbs]	PEtotal [hp
10.00	2663	31397	11586	0	0	62244	1910
12.00	3765	34700	12477	0	0	75087	2765
13.00	4384	36414	12923	0	0	82588	3295
14.00	5048	38169	13368	0	0	91007	3910
15.00	5755	39966	13814	0	0	100458	4624
16.00	6507	41804	14259	0	0	111561	5478
17.00	7303	43683	14705	0	0	124775	6509
18.00	8143	45603	15150	0	0	139006	7678
19.00	9026	47565	15499	0	0	152782	8908
20.00	9952	49568	15827	0	0	166733	10233

	Enviro	onment data	
[Wind]		[Seas]	
Wind Speed	34.00 kts	Sig wave height	6.200 ft
Angle off bow	0.00 deg	Modal wave period	8.8 sec
Transv hull area	2265.700 ft2		
VCE above WL	32.040 ft	[Channel]	
LCE fwd transom	320.000 ft	Channel width	0.000 ft
Transv superst area	2494.500 ft2	Channel depth	0.000 ft
VCE above WL	64.950 ft	Slope side	0.00 deg
LCE fwd transom	275.000 ft	Wetted hull girth	0.000 ft
Total longl area	17088.000 ft2	Channel depth	0.000 ft
VCE above WL	43.450 ft		
LCE fwd transom	176.500 ft		
Wind location	Free stream		
Hull type	Passenger		
	Symbo	ls and values	
Fn = Length	Froude number		
Rn = Reynol	ds number		
Cf = Friction	al resistance coefficie	nt	
[Cform] = Viscous	s form resistance coef	ficient	
[Cw] = Wave-r	naking resistance coe	fficient	
Cr = Residua	ary resistance coeffici	ent	
Ct = Total ba	are-hull resistance coe	efficient	
Rw/W = Wave-r	naking resistance-wei	ght merit ratio	
	ary resistance-weight	5	
	ull resistance-weight m		
Rw = Wave-r	naking resistance corr	ponent	
Rr = Residua	ary resistance compor	nent	
Rbare = Bare-hu	ull resistance		
PEbare = Bare-hu	III effectibe power		
Papp = Addition	nal appendage resista	nce	
	nal wind resistance	nee	
	nal sea-state resistance	·e	
	nal channel resistance		
	aneous resistance		
Rtotal = Total ve			
PEtotal = Total et			
	ased Froude number		
	e due to shallow water		
	e to shallow water eff		
	01	eeds speed parameter	
	ls parameter limit	en it in met woordlete te states - in a it -	environment of an initial data. Ellight Day Day in Comm
This evaluation has been carefully prepared to meet assumes no liability nor makes any performance gua		ce it is not possible to determine the	accuracy of provided data, Elliott Bay Design Group
Report ID20101102-1543			HydroComp NavCad 9.07.0134.NC.S86.118

			Predict	ion results			
√el [kts]	PEtotal [hp]	WakeFr	ThrDed	RelRot	EngRPM	PB/prop [hp]	Pitch [ft]
10.00	809	0.0703	0.0816	0.9753	462.8	701	11.885
12.00	1348	0.0701	0.0816	0.9753	541.8	1164	12.151
13.00	1708	0.0700	0.0816	0.9753	583.2	1474	12.245
14.00	2146	0.0700	0.0816	0.9753	633.8	1853	12.120
15.00	2675	0.0699	0.0816	0.9753	695.4	2315	11.789
16.00	3335	0.0698	0.0816	0.9753	747.5	2897	11.765
17.00	4165	0.0698	0.0816	0.9753	809.2	3638	11.622
18.00	5125	0.0697	0.0816	0.9753	866.6	4499	11.579
19.00	6144	0.0697	0.0816	0.9753	927.2	5408	11.440
20.00	7251	0.0696	0.0816	0.9753	993.1	6397	11.219
Vel [kts]	PropRPM	PropEff	HullEff	OPC	Thrust [lbs]	Thr/prop [lbs]	DelThr [lbs]
10.00	104.7	0.6360	0.9879	0.6005	28691	14345	26350
12.00	122.6	0.6392	0.9877	0.6033	39864	19932	36612
13.00	131.9	0.6395	0.9876	0.6036	46626	23313	42822
14.00	143.4	0.6390	0.9875	0.6031	54388	27194	49951
15.00	157.3	0.6376	0.9874	0.6017	63272	31636	58110
16.00	169.1	0.6354	0.9874	0.5996	73956	36978	67922
17.00	183.1	0.6319	0.9873	0.5963	86938	43469	79846
18.00	196.1	0.6289	0.9872	0.5934	101028	50514	92786
19.00	209.8	0.6271	0.9872	0.5917	114728	57364	105368
20.00	224.7	0.6258	0.9871	0.5904	128640	64320	118145
Vel [kts]	Torque [ft-lb]	PD/prop [hp]	PS/prop [hp]	PBtotal [hp]	Fuel/eng [gph]		
10.00	32275	660	673	1403	307.4		
12.00	45750	1095	1117	2328			
13.00	53835	1387	1415	2948			
14.00	62286	1744	1779	3707			
15.00	70919	2178	2223	4631			
16.00	82537	2725	2781	5794			
17.00	95765	3423	3493	7277			
18.00	110575	4232	4319	8998			
19.00	124235	5088	5192	10816			
20.00	137197	6018	6141	12794			


5000 BHP ENGINE - SEA STATE 0

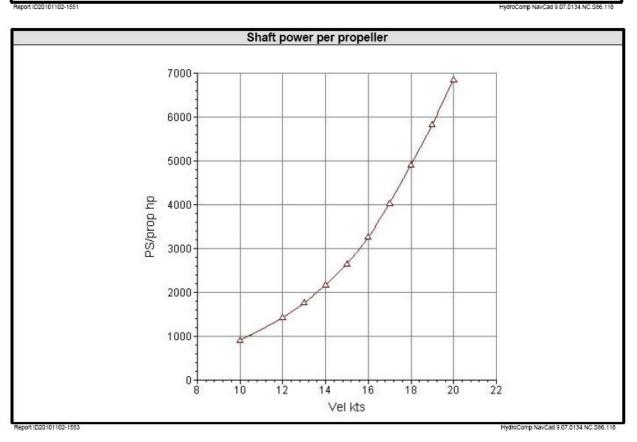
ELLIOTT BAY DESIGN GROUP 06137-006-050-1P0.doc

			Propelle	r performance			
Vel [kts]	J	Kt	Kq	Kt/J2	Kq/J3		
10.00	0.8174	0.1616	0.0331	0.2419	0.0605		
12.00	0.8380	0.1638	0.0342	0.2333	0.0581		
13.00	0.8435	0.1654	0.0347	0.2325	0.0579		
14.00	0.8360	0.1634	0.0340	0.2338	0.0582		
15.00	0.8164	0.1579	0.0322	0.2369	0.0591		
16.00	0.8101	0.1597	0.0324	0.2433	0.0609		
17.00	0.7952	0.1602	0.0321	0.2533	0.0638		
18.00	0.7863	0.1623	0.0323	0.2626	0.0665		
19.00	0.7758	0.1610	0.0317	0.2676	0.0679		
20.00	0.7624	0.1574	0.0305	0.2707	0.0689		
Vel [kts]	Sigma∨	SigmaN	Sigma7R	%CavAvg	%CavPeak	Press [psi]	MinBAR
10.00	11.24	7.51	1.36	0.0	0.0	1.6	0.1532
12.00	7.80	5.48	0.99	0.0	0.0	2.3	0.1937
13.00	6.64	4.73	0.85	0.0	0.0	2.7	0.2187
14.00	5.73	4.00	0.72	0.0	0.0	3.1	0.2483
15.00	4.99	3.33	0.60	0.0	2.1	3.6	0.2830
16.00	4.38	2.88	0.52	0.0	2.7	4.2	0.3235
17.00	3.88	2.46	0.45	2.2	3.6	5.0	0.3732
18.00	3.46	2.14	0.39	3.0	5.0	5.8	0.4267
19.00	3.11	1.87	0.34	3.9	6.5	6.5	0.4788
20.00	2.80	1.63	0.30	4.9	8.2	7.3	0.5318
√el [kts]	PropRn	Cth	Ср	MinP/D	TipSpd [fps]		
10.00	1.37e+7	0.6160	0.0018	0.928	60.3		
12.00	1.60e+7	0.5941	0.0017	0.948	70.6		
13.00	1.73e+7	0.5920	0.0017	0.954	76.0		
14.00	1.87e+7	0.5953	0.0017	0.946	82.6		
15.00	2.05e+7	0.6032	0.0018	0.925	90.6		
16.00	2.20e+7	0.6196	0.0018	0.921	97.4		
17.00	2.38e+7	0.6451	0.0019	0.908	105.4		
18.00	2.55e+7	0.6686	0.0020	0.901	112.9		
19.00	2.72e+7	0.6814	0.0020	0.891	120.8		
20.00	2.91e+7	0.6894	0.0021	0.877	129.4		

		Propulsi	ve coefficients	
Wake fraction Thrust deduction Relative rotative effic Friction line Correlation allowanc		[Calc] Holtrop 1984 [Calc] Holtrop 1984 [Calc] Holtrop 1984 Hughes 0.00034	Wake fract scale correction Rudder loc Wake fract duct correction Tunnel stern correction	[Off] Free stream [Off] [Off]
3D form factor	.c	1.2398		
		Н	ull data	
[General]			[Ct-based]	
Length between PP		330.260 ft	Max section area	[Cx 0.734] 754.100 ft2
WL bow pt aft FP		0.000 ft	Waterplane area	[Cw 0.745] 15798.000 ft2
Length on WL		330.260 ft	Trim by stern	0.000 ft
Max beam on WL		64.180 ft	LCB aft of FP	[0.513 Lpp] 169.300 ft
Max model draft		16.000 ft	Bulb ext fwd FP	10.000 ft
Displacement bare		4364.40 LT	Bulb area at FP	75.000 ft2
Wetted surface		20093.400 ft2	Bulb ctr above BL	6.750 ft
Chine type		Round bilge	Transom area	[0.025 Ax] 19.000 ft2
[Principal paramete	ers]		Transom beam	[0.288 B] 18.510 ft
Lwl/B		5.1458	Transom draft	[0.094 T] 1.500 ft
B/T		4.0113	Half ent angle	12.90 deg
Cb		0.4501	Bow shape	[Normal] Average flow
Cws		2.8299	Stern shape	[Normal] Average flow
		Prediction	n method check	
Wake fraction	Holtrop 1984			
Fn(Lwl)	0.16	0.10.8	* = Outside	e parameter limit
Fn-high	0.33	0.10.8		
Lwl/Bwl	5.15	3.914.9		
Bwl/T	4.01	2.14 *		
Cp(Lwl)	0.61	0.550.85		
Lambda	0.73	00.85		
Thrust deduction	Holtrop 1984			
Fn(Lwl)	0.16	0.10.8		
Fn-high	0.33	0.10.8		
Lwl/Bwl	5.15	3.914.9		
Bwl/T	4.01	2.14 *		
Cp(Lwl)	0.61	0.550.85		
Lambda	0.73	00.85		
Rel-rot efficiency	Holtrop 1984			
Fn(Lwl)	0.16	0.10.8		
Fn-high	0.33	0.10.8		
Lwl/Bwl	5.15	3.914.9		
Bwl/T	4.01	2.14 *		
Cp(Lwl)	0.61	0.550.85		
Lambda	0.73	00.85		
Report ID20101102-1546	v./ v	00.00		HydroComp NavCad 9.07.0134.NC.S86.118

	Syster	n analysis	
Analysis type	Free run	Water type	Standard Salt
Cav criteria	Keller eqn	Mass density	1.9905 slug/ft3
CPP analysis method	[On Combinator	Viscosity	1.2791e-05 ft2/s
CPP Engine RPM	900		
	Propu	ilsor data	
Description		Blades	4
Propulsors	2	Exp area ratio	0.640
Propulsor type	Series	Diameter	11.000 ft
Propeller series	B-series	Pitch	12.110 ft
		Immersion	10.500 ft
	Propel	ler options	
Scale corr	Full ITTC-78	Propeller cup	0.0 mm
Kt mult	0.960	Pitch type	CPP
Kq mult	1.050	Cav breakdown	[On]
Blade t/c	[Std] 0.000	Shaft angle corr	[On] 1.50 deg
Roughness	[Std] 0.0 mm	Added angle of run	6.62 deg
	Engi	ine data	
Engine file	EMD 20-710G7C-T2[].eng	Gear ratio	4.420
Rated RPM	900	Gear efficiency	0.960
Rated power	5000 hp	Shaft efficiency	0.980

			Predict	ion results			
Vel [kts]	PEtotal [hp]	WakeFr	ThrDed	RelRot	EngRPM	PB/prop [hp]	Pitch [ft]
10.00	1062	0.0703	0.0816	0.9753	514.5	959	11.272
12.00	1678	0.0701	0.0816	0.9753	585.9	1495	11.741
13.00	2080	0.0700	0.0816	0.9753	632.6	1845	11.693
14.00	2561	0.0700	0.0816	0.9753	688.9	2267	11.463
15.00	3136	0.0699	0.0816	0.9753	736.9	2774	11.473
16.00	3844	0.0698	0.0816	0.9753	791.8	3405	11.398
17.00	4724	0.0698	0.0816	0.9753	846.7	4201	11.391
18.00	5736	0.0697	0.0816	0.9753	907.9	5118	11.284
19.00	6808	0.0697	0.0816	0.9753	972.3	6085	11.098
20.00	7972	0.0696	0.0816	0.9753	1042.3	7135	10.842
Vel [kts]	PropRPM	PropEff	HullEff	OPC	Thrust [lbs]	Thr/prop [lbs]	DelThr [lbs]
10.00	116.4	0.6111	0.9879	0.5770	37697	18848	34621
12.00	132.6	0.6196	0.9877	0.5849	49627	24814	45579
13.00	143.1	0.6221	0.9876	0.5872	56768	28384	52137
14.00	155.9	0.6234	0.9875	0.5884	64909	32454	59613
15.00	166.7	0.6239	0.9874	0.5888	74172	37086	68121
16.00	179.1	0.6229	0.9874	0.5879	85234	42617	78281
17.00	191.6	0.6207	0.9873	0.5857	98596	49298	90552
18.00	205.4	0.6186	0.9872	0.5837	113064	56532	103840
19.00	220.0	0.6176	0.9872	0.5827	127144	63572	116771
20.00	235.8	0.6168	0.9871	0.5820	141436	70718	129897
Vel [kts]	Torque [ft-lb]	PD/prop [hp]	PS/prop [hp]	PBtotal [hp]	Fuel/eng [gph]		
10.00	39698	902	921	1918			
12.00	54330	1406	1435	2989			
13.00	62111	1736	1771	3690			
14.00	70089	2133	2176	4534			
15.00	80182	2610	2663	5548			
16.00	91609	3204	3269	6811			
17.00	105668	3952	4032	8401			
18.00	120075	4815	4913	10236			
19.00	133299	5725	5842	12170			
20.00	145802	6713	6850	14270			


5000 BHP ENGINE – SEA STATE 2

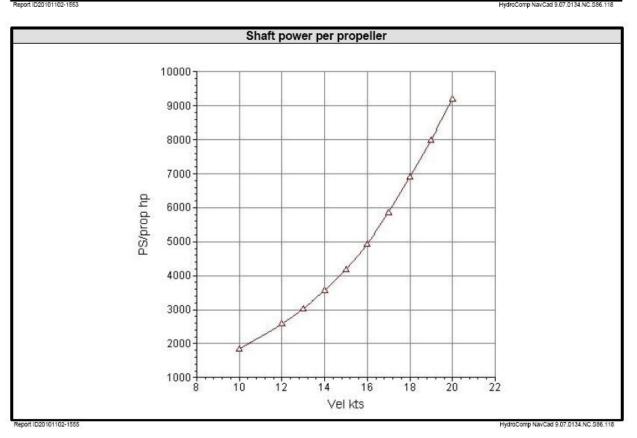
Report ID20101102-1551

			Propelle	r performance			
Vel [kts]	J	Kt	Kq	Kt/J2	Kq/J3		
10.00	0.7352	0.1718	0.0329	0.3178	0.0828		
12.00	0.7749	0.1744	0.0347	0.2905	0.0746		
13.00	0.7776	0.1711	0.0340	0.2831	0.0724		
14.00	0.7691	0.1650	0.0324	0.2790	0.0712		
15.00	0.7705	0.1648	0.0324	0.2777	0.0708		
16.00	0.7649	0.1641	0.0321	0.2804	0.0716		
17.00	0.7600	0.1660	0.0323	0.2873	0.0737		
18.00	0.7505	0.1655	0.0320	0.2938	0.0756		
19.00	0.7397	0.1623	0.0309	0.2965	0.0764		
20.00	0.7264	0.1571	0.0294	0.2977	0.0768		
Vel [kts]	Sigma∨	SigmaN	Sigma7R	%CavAvg	%CavPeak	Press [psi]	MinBAR
10.00	11.24	6.07	1.13	0.0	0.0	2.2	0.1924
12.00	7.80	4.68	0.86	0.0	0.0	2.8	0.2345
13.00	6.64	4.02	0.74	0.0	0.0	3.2	0.2612
14.00	5.73	3.39	0.62	0.0	2.1	3.7	0.2923
15.00	4.99	2.96	0.55	0.0	2.7	4.2	0.3269
16.00	4.38	2.56	0.47	2.2	3.4	4.9	0.3688
17.00	3.88	2.24	0.41	2.9	4.6	5.6	0.4193
18.00	3.46	1.95	0.36	3.8	6.1	6.5	0.4742
19.00	3.11	1.70	0.32	4.8	7.8	7.3	0.5277
20.00	2.80	1.48	0.28	6.0	9.7	8.1	0.5823
Vel [kts]	PropRn	Cth	Ср	MinP/D	TipSpd [fps]		
10.00	1.50e+7	0.8094	0.0025	0.862	67.0		
12.00	1.72e+7	0.7396	0.0022	0.898	76.4		
13.00	1.86e+7	0.7208	0.0022	0.899	82.4		
14.00	2.02e+7	0.7105	0.0021	0.887	89.8		
15.00	2.16e+7	0.7071	0.0021	0.889	96.0		
16.00	2.32e+7	0.7141	0.0021	0.883	103.2		
17.00	2.48e+7	0.7316	0.0022	0.880	110.3		
18.00	2.66e+7	0.7483	0.0023	0.871	118.3		
19.00	2.84e+7	0.7551	0.0023	0.860	126.7		
20.00	3.04e+7	0.7580	0.0023	0.845	135.8		

		Propulsi	ve coefficients	
Wake fraction		[Calc] Holtrop 1984	Wake fract scale correction	[Off]
Thrust deduction		[Calc] Holtrop 1984	Rudder loc	Free stream
Relative rotative effi	ciency	[Calc] Holtrop 1984	Wake fract duct correction	[Off]
Friction line		Hughes	Tunnel stern correction	[Off]
Correlation allowand	e	0.00034		
3D form factor		1.2398		
		Н	ull data	
[General]			[Ct-based]	
Length between PP		330.260 ft	Max section area	[Cx 0.734] 754.100 ft2
WL bow pt aft FP		0.000 ft	Waterplane area	[Cw 0.745] 15798.000 ft2
Length on WL		330.260 ft	Trim by stern	0.000 ft
Max beam on WL		64.180 ft	LCB aft of FP	[0.513 Lpp] 169.300 ft
Max model draft		16.000 ft	Bulb ext fwd FP	10.000 ft
Displacement bare		4364.40 LT	Bulb area at FP	75.000 ft2
Wetted surface		20093.400 ft2	Bulb ctr above BL	6.750 ft
Chine type		Round bilge	Transom area	[0.025 Ax] 19.000 ft2
[Principal paramete	ers]		Transom beam	[0.288 B] 18.510 ft
Lwl/B		5.1458	Transom draft	[0.094 T] 1.500 ft
B/T		4.0113	Half ent angle	12.90 deg
Cb		0.4501	Bow shape	[Normal] Average flow
Cws		2.8299	Stern shape	[Normal] Average flow
			n method check	
Wake fraction	Holtrop 1984			
Fn(Lwl)	0.16	0.10.8	* = Outside	e parameter limit
Fn-high	0.33	0.10.8		
Lwl/Bwl	5.15	3.914.9		
Bwl/T	4.01	2.14 *		
Cp(Lwl)	0.61	0.550.85		
Lambda	0.73	00.85		
Thrust deduction	Holtrop 1984			
Fn(Lwl)	0.16	0.10.8		
Fn-high	0.33	0.10.8		
Lwl/Bwl	5.15	3.914.9		
Bwl/T	4.01	2.14 *		
Cp(Lwl)	0.61	0.550.85		
Lambda	0.73	00.85		
Rel-rot efficiency	Holtrop 1984			
Fn(Lwl)	0.16	0.10.8		
Fn-high	0.33	0.10.8		
Lwl/Bwl	5.15	3.914.9		
Bwl/T	4.01	2.14 *		
Cp(Lwl)	0.61	0.550.85		
Lambda	0.73	00.85		

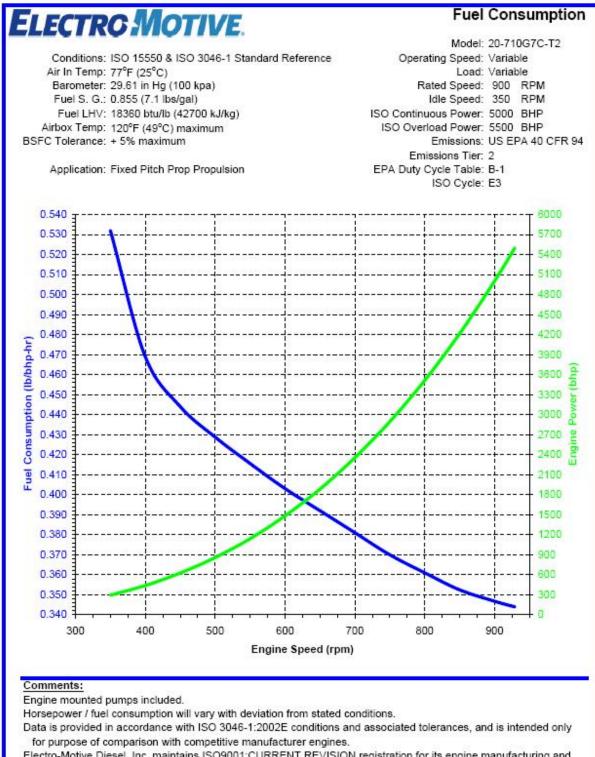
	Syster	n analysis	
Analysis type	Free run	Water type	Standard Salt
Cav criteria	Keller eqn	Mass density	1.9905 slug/ft3
CPP analysis method	[On Combinator	Viscosity	1.2791e-05 ft2/s
CPP Engine RPM	900		
	Propu	Ilsor data	
Description		Blades	4
Propulsors	2	Exp area ratio	0.640
Propulsor type	Series	Diameter	11.000 ft
Propeller series	B-series	Pitch	12.110 ft
		Immersion	10.500 ft
	Propel	er options	
Scale corr	Full ITTC-78	Propeller cup	0.0 mm
Kt mult	0.960	Pitch type	CPP
Kq mult	1.050	Cav breakdown	[On]
Blade t/c	[Std] 0.000	Shaft angle corr	[On] 1.50 deg
Roughness	[Std] 0.0 mm	Added angle of run	6.62 deg
	Eng	ne data	
Engine file	EMD 20-710G7C-T2[].eng	Gear ratio	4.420
Rated RPM	900	Gear efficiency	0.960
Rated power	5000 hp	Shaft efficiency	0.980

			Predict	ion results			
√el [kts]	PEtotal [hp]	WakeFr	ThrDed	RelRot	EngRPM	PB/prop [hp]	Pitch [ft]
10.00	1910	0.0703	0.0816	0.9753	644.0	1930	10.371
12.00	2765	0.0701	0.0816	0.9753	729.4	2689	10.446
13.00	3295	0.0700	0.0816	0.9753	770.6	3162	10.542
14.00	3910	0.0700	0.0816	0.9753	814.4	3716	10.608
15.00	4624	0.0699	0.0816	0.9753	857.5	4363	10.705
16.00	5478	0.0698	0.0816	0.9753	909.6	5145	10.688
17.00	6509	0.0698	0.0816	0.9753	973.5	6103	10.544
18.00	7678	0.0697	0.0816	0.9753	1046.2	7193	10.306
19.00	8908	0.0697	0.0816	0.9753	1122.3	8335	10.030
20.00	10233	0.0696	0.0816	0.9753	1204.9	9574	9.711
Vel [kts]	PropRPM	PropEff	HullEff	OPC	Thrust [lbs]	Thr/prop [lbs]	DelThr [lbs]
10.00	145.7	0.5459	0.9879	0.5154	67773	33886	62244
12.00	165.0	0.5675	0.9877	0.5357	81757	40878	75087
13.00	174.4	0.5749	0.9876	0.5426	89924	44962	82588
14.00	184.3	0.5807	0.9875	0.5480	99091	49546	91007
15.00	194.0	0.5850	0.9874	0.5520	109382	54691	100458
16.00	205.8	0.5877	0.9874	0.5546	121471	60735	111561
17.00	220.3	0.5887	0.9873	0.5555	135859	67929	124775
18.00	236.7	0.5892	0.9872	0.5560	151354	75677	139006
19.00	253.9	0.5900	0.9872	0.5566	166354	83177	152782
20.00	272.6	0.5901	0.9871	0.5567	181544	90772	166733
/el [kts]	Torque [ft-lb]	PD/prop [hp]	PS/prop [hp]	PBtotal [hp]	Fuel/eng [gph]		
10.00	63837	1816	1853	3860			
12.00	78505	2529	2581	5377			
13.00	87404	2975	3036	6325			
14.00	97184	3496	3567	7432			
15.00	108365	4104	4188	8725			
16.00	120463	4840	4939	10289			
17.00	133526	5742	5859	12206			
18.00	146447	6767	6906	14387			
19.00	158183	7842	8002	16670			
20.00	169238	9007	9191	19147			


5000 BHP ENGINE - SEA STATE 4

Report ID20101102-1553

			Propelle	r performance			
/el [kts]	J	Kt	Kq	Kt/J2	Kq/J3		
10.00	0.5874	0.1972	0.0338	0.5714	0.1666		
12.00	0.6225	0.1854	0.0324	0.4785	0.1342		
13.00	0.6384	0.1827	0.0323	0.4484	0.1241		
14.00	0.6506	0.1803	0.0321	0.4259	0.1167		
15.00	0.6620	0.1795	0.0323	0.4095	0.1114		
16.00	0.6658	0.1771	0.0319	0.3996	0.1082		
17.00	0.6610	0.1730	0.0309	0.3959	0.1070		
18.00	0.6513	0.1669	0.0294	0.3934	0.1063		
19.00	0.6409	0.1594	0.0276	0.3880	0.1047		
20.00	0.6284	0.1509	0.0256	0.3821	0.1031		
Vel [kts]	Sigma∨	SigmaN	Sigma7R	%CavAvg	%CavPeak	Press [psi]	MinBAR
10.00	11.24	3.88	0.75	0.0	2.3	3.9	0.3151
12.00	7.80	3.02	0.58	2.3	3.0	4.7	0.3653
13.00	6.64	2.71	0.52	2.6	3.6	5.1	0.3949
14.00	5.73	2.42	0.46	3.1	4.4	5.7	0.4284
15.00	4.99	2.19	0.41	3.7	5.4	6.2	0.4663
16.00	4.38	1.94	0.37	4.6	6.7	6.9	0.5114
17.00	3.88	1.70	0.32	5.7	8.4	7.8	0.5657
18.00	3.46	1.47	0.28	7.1	10.4	8.6 **	0.6245
19.00	3.11	1.28	0.24	8.7	12.7	9.5 **	0.6815 **
20.00	2.80	1.11	0.21	10.6 **	15.6	10.4 **	0.7393 **
√el [kts]	PropRn	Cth	Ср	MinP/D	TipSpd [fps]		
10.00	1.85e+7	1.4551	0.0050	0.754	83.9		
12.00	2.10e+7	1.2185	0.0040	0.775	95.1		
13.00	2.23e+7	1.1418	0.0037	0.786	100.4		
14.00	2.36e+7	1.0847	0.0035	0.795	106.1		
15.00	2.48e+7	1.0428	0.0033	0.804	111.7		
16.00	2.64e+7	1.0177	0.0032	0.806	118.5		
17.00	2.82e+7	1.0081	0.0032	0.799	126.9		
18.00	3.03e+7	1.0017	0.0032	0.786	136.3		
19.00	3.24e+7	0.9880	0.0031	0.772	146.2		
20.00	3.48e+7	0.9730	0.0031	0.756	157.0		


		Propulsi	ve coefficients	
Wake fraction Thrust deduction Relative rotative effic Friction line Correlation allowanc 3D form factor	2	[Calc] Holtrop 1984 [Calc] Holtrop 1984 [Calc] Holtrop 1984 Hughes 0.00034 1.2398	Wake fract scale correction Rudder loc Wake fract duct correction Tunnel stern correction	[Off] Free stream [Off] [Off]
		Н	ull data	
[General] Length between PP WL bow pt aft FP Length on WL Max beam on WL Max model draft Displacement bare Wetted surface Chine type [Principal paramete Lwl/B B/T Cb	ers]	330.260 ft 0.000 ft 330.260 ft 64.180 ft 16.000 ft 4364.40 LT 20093.400 ft2 Round bilge 5.1458 4.0113 0.4501	[Ct-based] Max section area Waterplane area Trim by stern LCB aft of FP Bulb ext fwd FP Bulb area at FP Bulb ctr above BL Transom area Transom beam Transom draft Half ent angle Bow shape	[Cx 0.734] 754.100 ft2 [Cw 0.745] 15798.000 ft2 0.000 ft [0.513 Lpp] 169.300 ft 10.000 ft 75.000 ft2 6.750 ft [0.025 Ax] 19.000 ft2 [0.288 B] 18.510 ft [0.094 T] 1.500 ft 12.90 deg [Normal] Average flow
Cws		2.8299	Stern shape	[Normal] Average flow
		Prediction	n method check	
Wake fraction Fn(Lwl) Fn-high Lwl/Bwl Bwl/T Cp(Lwl) Lambda	Holtrop 1984 0.16 0.33 5.15 4.01 0.61 0.73	0.10.8 0.10.8 3.914.9 2.14 * 0.550.85 00.85	* = Outside	e parameter limit
Thrust deduction Fn(Lwl) Fn-high Lwl/Bwl Bwl/T Cp(Lwl) Lambda Rel-rot efficiency Fn(Lwl) Fn-high Lwl/Bwl Bwl/T Cp(Lwl) Lambda Report ID20101102-1553	Holtrop 1984 0.16 0.33 5.15 4.01 0.61 0.73 Holtrop 1984 0.16 0.33 5.15 4.01 0.61 0.73	0.10.8 0.10.8 3.914.9 2.14 * 0.550.85 00.85 0.10.8 0.10.8 3.914.9 2.14 * 0.550.85 00.85		

	Syster	n analysis	
Analysis type	Free run	Water type	Standard Salt
Cav criteria	Keller eqn	Mass density	1.9905 slug/ft3
CPP analysis method	[On Combinator	Viscosity	1.2791e-05 ft2/s
CPP Engine RPM	900		
	Propu	ılsor data	
Description		Blades	4
Propulsors	2	Exp area ratio	0.640
Propulsor type	Series	Diameter	11.000 ft
Propeller series	B-series	Pitch	12.110 ft
		Immersion	10.500 ft
	Propel	ler options	
Scale corr	Full ITTC-78	Propeller cup	0.0 mm
Kt mult	0.960	Pitch type	CPP
Kq mult	1.050	Cav breakdown	[On]
Blade t/c	[Std] 0.000	Shaft angle corr	[On] 1.50 deg
Roughness	[Std] 0.0 mm	Added angle of run	6.62 deg
	Eng	ine data	
Engine file	EMD 20-710G7C-T2[].eng	Gear ratio	4.420
Rated RPM	900	Gear efficiency	0.960
Rated power	5000 hp	Shaft efficiency	0.980

11/29/10

EMD ENGINE DATA

Electro-Motive Diesel, Inc. maintains ISO9001:CURRENT REVISION registration for its engine manufacturing and test facilities. Factory engine test data is recorded at observed site conditions in accordance with ISO9001/QMS9000 procedures.

Appendix B

TAKU Model Test Report

THE UNIVERSITY OF MICHIGAN ANN ARBOR COLLEGE OF ENGINEERING

AVAL ARCHITECTURE AND MARINE ENGINEERING RICHARD B. COUCH, B.S., N.A. & M.E., AERO. ENG., PROFESSOR HENRY C. ADAMS, A.B., M.S., PROFESSOR HARRY BENFORD, B.S.E., PROFESSOR GEORGE L. WEST, JR., B.S.E., PH.D., ASSISTANT PROFESSOR FINN C. MICHELSEN, B.S.E., M.S.E., PH.D., ASSISTANT PROFESSOR RAYMOND A. YAGLE, B.S.E., M.S.E., ASSISTANT PROFESSOR

LOUIS A. BAIER, B.MAR.E., N.A. PROFESSOR EMERITUS

> Mr. Philip F. Spaulding P. F. Spaulding and Associates 65 Marion Street Seattle 4, Washington

RP	-	(setas			anen.
PHILIE	FCE		IV ING &	E	D
1		-			V.
17	JUL	24	1961	-	-

450 WEST ENGINEERING BUILDING

Dear Phil:

We have completed the tests on the model of the 350 foot Alaskan ferry, and a report of the work is enclosed herewith. As you will note, the bilge keel flow data are also enclosed. In the case of the rudders, average flow direction for the mid-height of the rudders was also measured. The speed for the flow measurements was 20 knots with a check at about 18 knots and at about 22 knots. There was little change over this speed range.

The rudder setting for zero angle of attack was almost exactly fore and aft with perhaps a slight toe-in of the trailing edge. The best way to check the rudders is, of course, in a propulsion test. In my experience with destroyer hulls which had the same type of stern, rudders, etc., the angle for minimum SHP is usually about $1\frac{10}{2}$ to 2^{0} toed in aft. I recommend that such a setting be used on the ferry.

The EHP curves are for bare hull - i.e., no appendages except centerline skeg - and for the hull with all appendages except bilge keels. The estimated increase in EHP due to bilge keels is about 2.5 percent. This assumes keels 30 percent of the length and 18 inches deep.

The model was actually tested with rudders and the estimated rudder resistance subtracted to get the bare hull data. The estimated resistance of shafts and struts was based upon the data for Model 707A, your previous design, and should be good for the present model.

The new hull is substantially better than the others. As you will note, the EHP is slightly less at 20 knots in spite of a considerably greater displacement. This comparison is somewhat affected by the fact that Cap Baier used a slightly Mr. P. F. Spaulding Page 2

smaller roughness allowance whereas we used a straight 0.0004. The latter is almost the same as Baier's at the top speed. If exactly the same allowance was used in both cases, the new hull could look even better.

I have not had time to analyze the hull and its performance in detail. It appears, however, to be very good. The LCB could be shifted aft a small amount, but the effect would be quite small.

I have to be away a week; when I get back, I will look into this a little further.

We will hold the model until you have time to digest the data. Let us know when you want it. In the meantime, we are in the process of shifting over to the new towing carriage which will take about two weeks. We can go ahead with the other model construction whenever you are ready.

Yours truly,

R. B. Couch

RBC/ss Encs.

UNIVERSITY OF MICHIGAN SHIP MODEL TOWING TANK

REPORT OF STILL WATER RESISTANCE TESTS OF A 352-FOOT TWIN SCREW ALASKAN FERRY

for

Philip F. Spaulding and Associates

by

J. L. Moss

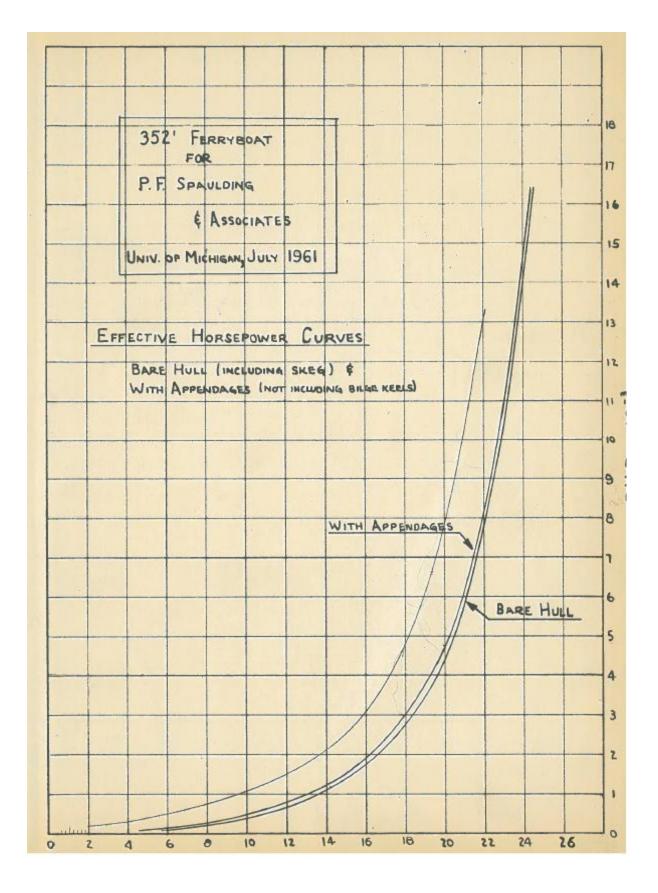
University of Michigan Office of Research Administration

> Project Number 04629 July, 1961

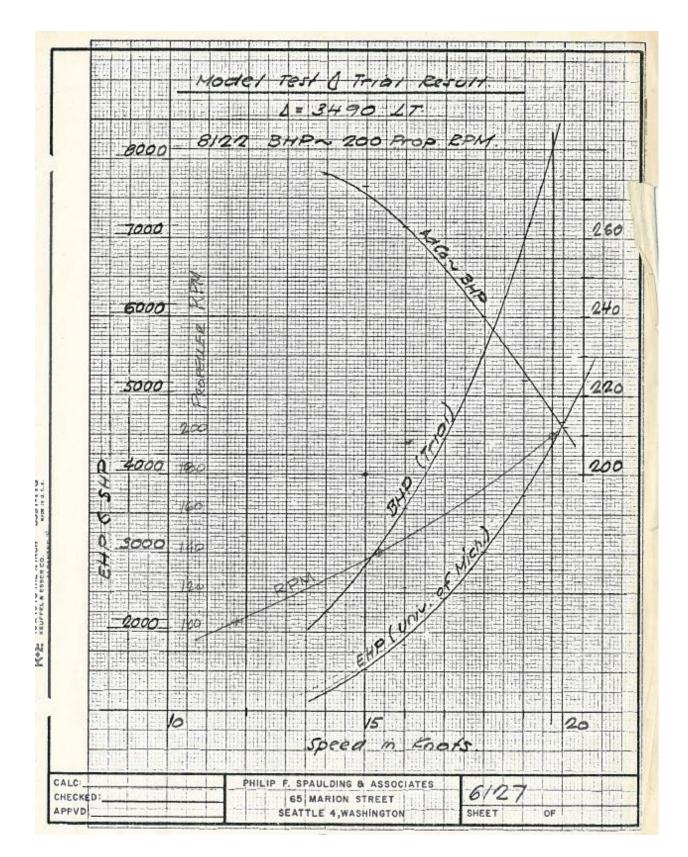
Approved: 1 R. B. Couch, Director

UNIVERSITY OF MICHIGAN SHIP MODEL TOWING TANK

July 21, 1961


FOR: Philip F. Spaulding and Associates SHIP: 352-Foot Twin Screw Alaskan Ferry SHIP PARTICULARS: 3521-0" LOA 3261-0" LWL 314 "-0" 55 "-6" LBP BLWL 15 '-0" Н 3454 L.T. Δ Wetted Surface 18,850 Sq.Ft. (including appendages except bilge keels) СВ 0.458 0.812 c_x Сp 0.563 Trial Speed 20 Knots APPENDAGES: One Skeg and Two Rudders MODEL SCALE: 3/8" = 1 Foot MODEL NUMBER: U of M 934 FRICTION EXTRAPOLATER: 1947 A.T.T.C. ROUGHNESS ALLOWANCE: $\Delta C_{f} = 0.0004$ TURBULENCE STIMULATION: 0.036 Inch Diameter Trip Wire Approximately .05L Aft F.P.

DATA:


v/ (gL	V _K KNOTS	EHP BARE (INCL.SKEG)	EHP WITH APPEN.(EXCEPT BILGE KEELS)	* % INCREASE IN EHP FOR BILGE KEELS	EST.
.100 6		89	111	3.3	143
.132	8	210	252		322
.166	10	14.114	480		615
.181	11	547	629		806
.198	12	687	776		994
.214	13	874	979		1255
.231	14	1089	1209		1550
.247	15	1386	1525		1953
.264	16	1686	1838		2360
.280	17	2224	2424		3105
.297	18	2784	3007		3860
.313	19	3489	3733		4780
.330	20	4364	4.669		5990
.346	21	5652	6048		7750
.363	22	7891	8364	ł	10,730
• 379	23	10154	10763		13,800
.396	24	14111	14817	1.3	19,000

* Based on Bilge Keels Approximately 100 Feet Long and 18 Inches Deep.

NOTE: SEA TRIALS OF MALISPINA & TAKU INDICATE "EST. SERV. EHP" IS MORE LIKE "TRIAL EHP" W/ H = 14'-11" \$ 14'-10" & REP. ON 1/10/63 \$ 3/24/63 Q = 3525 \$ 3460 TONS PM FULPER HALL TAKE 19.4 11.

PROPELLER DES	SIGN		Bp	CHA	RT		DATE	5-		
BRANCH	and the second			LENGTH		L =		0-	7-9	
DATED			-	LENGTH						
CUSTOMER ALAS	KA			BREADTH						
ADDRESS ALAS				DEPTH			1991-0112-022			
SHIP NAME FRIGIDAU				CONTRACTOR OF THE OWNER OF	MEAN M					
SERVICE FERT				A	TONS,	W.	a manager			
ENGINE MODEL	7			T	10110			ahak!		
BHP & RPM	500	0			6/9/61	6-16		1144	THE REPORT	
ENGINE DRIVEN AUX.	-	-		-	al 1/21	610		C		
NET BHP	5000	6			5000	5000	4000	SUP		
TRANSMISSION EFFICIENCY	,90				.92	.92	.95	0/111		
DHP	4500	5			4600	4600	3800	30.00		
PROPELLER RPM	300	200	200	-	240	220	200	200	100	
SPEED, MPH										
SPEED, KNOTS	20				19.5	19.5	19.8	20,		
WAKE FRACTION = W	.12				,12	.12	.12	.105		
$V_A = V_K (1 - \omega)$	17.6				17.15	17.15	17.4	17.9		
VA 2.5	1300	· · · · · · · · · · · · · · · · · · ·			1200	1200	1225	1355		
PROPELLER TYPE	4 BL	B.4	-55		B. 4.55		B.4.55	1 10 4 9		
Вр	15.5	10,30		3	13.4	12.3	9.7	9.0	7	
6 OR A	187.5	125	113.6		140	135.	121	117.5	11.02	
DIAMETER	11 Er	11	10'		16'	10.5	10,5	10.5	- Designation	
PITCH RATIO (CHART)	1150	1,10	1.35		1025	1.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.15		
PITCH RATIO (UNIFORM)	-17.2-3	1.08	1.33	2010	1003	1.05	1-125	1.12	-	
PITCH		11.9'	131	1			11.8'			
		11.4	.235	and the second sec	,20	,143	.15			
SA "C" CORRECTION		1.05	1.07		1.070	1.065	1.055			
C"	-	1.05	1.010	-	100	1003	1.95			
C"× CORRECTION										
	1999 William Color 19	.70	.675		,670	.679	.706	215	61.2	
°C		.735				.723	.706	10		
HP / PROPELLER			1.00	No. of Street,		W. State	2680			
IO. OF PROPELLERS		1. A. A.		1	1	1000	5360		1	
TOTAL EHP	Servine 1						1			
		-								
RECOMMENDATION : DIAMETER =								- (
PITCH =								0.004		
NO. BLADES =								OFFI	1	
	DEV. AR	EA =	1						Sec. 188	
BP = N (DHP) VA 2.5	λ = -7	Va = 12 2 D'	ND"	A = 101.3	33 VA		T _G = .	DHP ×	e VA	
$\delta = \frac{ND'}{V_A}$ I-	$T_{N} = \frac{DHP \times QPC}{.00307 V_{K}}$									
NOTES : $\frac{D}{V_A}$ = .625	VH 6	7	516							

3/13/62 6126 FUEL CONSUMPTION MODEL TEST DATA: @ VK = 16 K EHP w/ APPENDAGES & BILGE KEELS 9 1886 SERVICE ALLOWANCE @ 25% 2 472 SERVICE EHP = 2358 QPC a . 70 DHP 3380 TSHP@.93 3630 2 EAY 3650 LET SP. FUEL RATE = . 37 HOURLY CONSUMPTION = 1350 #/HR @ # 8.0 #/ GAL Cows. = 169 GAL/HR = 4.0B